Table 2. Selected bond distances (Å) and angles (°)

Numbers in parentheses are e.s.d.'s of the least significant digits.

MoS(1)	2.3452 (9)	MoN(31)	2.216 (2)
Mo-S(2)	2.3702 (9)	S(1)-C(41)	1.769 (3)
Mo-N	1.766 (2)	S(2)-C(51)	1.770 (3)
Mo-N(11)	2.244 (2)	O—N	1.193 (3)
Mo-N(21)	2.205 (2)		
S(1)—Mo—S(2)	102-92 (3)	N—Mo—N(11)	177-4 (1)
S(1)—Mo—N	94-80 (9)	N-Mo-N(21)	95.7 (1)
S(1)-Mo-N(11)	82.72 (6)	N-Mo-N(31)	94-2 (1)
S(1)-Mo-N(21)	89.23 (7)	N(11)-Mo-N(21)	83.53 (9)
S(1)-Mo-N(31)	164-75 (7)	N(11)-Mo-N(31)	88.03 (9)
S(2)—Mo—N	86.38 (8)	N(21)-Mo-N(31)	77.66 (9)
S(2)-Mo-N(11)	94.93 (6)	Mo-S(1)-C(41)	112.2 (1)
S(2)-Mo-N(21)	167-49 (7)	Mo-S(2)-C(51)	114-2 (1)
S(2)-Mo-N(31)	89.89 (7)	Mo-N-O	179-1 (2)

the complex. Whenever filled d_{xz} and d_{yz} orbitals exist, as in the {Mo(NO)}⁴ complexes, the torsional angles adopt values near 0 and 180° to maximize $d_{xy}-p$ overlap (Ashby & Enemark, 1986).

We thank Dr C. J. Jones, University of Birmingham, England, for providing us with the crystals used in the structure determination. The study was carried out using the facilities of the Molecular Structure Laboratory, Department of Chemistry, University of Arizona. We gratefully acknowledge support by the National Institutes of Health (GM-37773).

Table 3.	Torsion	angles X-	-Mo	-S—	-C (°)	in selected	ļ
		comp	lexes				

			Reference
$[{HB(Me_2pz]_3}Mo(NO)(SC_6H_5)_2]$	-16	- 168	This work
$[(\eta^{5}-C_{5}H_{5})Mo(NO)(SC_{6}H_{5})_{2}]$	12	- 174	(1)
$[{HB(Me_2pz)_3}MoO(SC_6H_5)_2]$	- 34	-110	(2)
$[{HB(Me_2pz)_3}MoO(OC_6H_5)_2]$	- 49	- 90	(3)

References: (1) Ashby & Enemark (1986). (2) Cleland et al. (1987). (3) Kipke et al. (1989).

References

ASHBY, M. T. & ENEMARK, J. H. (1986). J. Am. Chem. Soc. 108, 730-733.

- CLELAND, W. E. JR, BARNHART, K. M., YAMANOUCHI, K., COLLISON, D., MABBS, F. E., ORTEGA, R. B. & ENEMARK, J. H. (1987). Inorg. Chem. 26, 1017–1025.
- CROMER, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- CROMER, D. T. & WABER, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- FRENZ, B. A. (1978). The Enraf-Nonius CAD-4 SDP A Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. In Computing in Crystallography, edited by H. SCHENK, R. OLTHOF-HAZEKAMP, H. VAN KONINGSVELD & G. C. BASSI. Delft Univ. Press.
- KIPKE, C. A., CLELAND, W. E. JR, ROBERTS, S. A. & ENEMARK, J. H. (1989). Acta Cryst. C45, 870–872.
- McCleverty, J. A., Drane, A. S., Bailey, N. A. & Smith, J. M. A. (1983). J. Chem. Soc. Dalton Trans. pp. 91–96.

Acta Cryst. (1989). C45, 1294-1296

Structure of Triphenyltin(IV) 2-Aminophenyl Sulfide

BY SEIK WENG NG AND V. G. KUMAR DAS

Institute of Advanced Studies and Department of Chemistry, University of Malaya, 59100 Kuala Lumpur, Malaysia

F. L. LEE AND E. J. GABE

Chemistry Division, National Research Council of Canada, Ottawa, Ontario K1A OR6, Canada

AND F. E. SMITH

Department of Chemistry, Laurentian University, Sudbury, Ontario P3E 2C6, Canada

(Received 4 November 1988; accepted 16 January 1989)

Abstract. (2-Aminobenzenethiolato-*S*)triphenyltin-(IV), [Sn(C₆H₅)₃(C₆H₆NS)], $M_r = 474 \cdot 17$, monoclinic, $P2_1/a$, a = 9.074 (1), b = 19.062 (1), c = 13.119 (1) Å, $\beta = 106.78$ (1)°, V = 2172.5 (4) Å³, Z = 4, $D_x = 1.44$ Mg m⁻³, λ (Cu K α_1) = 1.54056 Å, $\mu = 10.55$ mm⁻¹, F(000) = 952, R = 0.044, wR = 0.037

benzenethiol ligand is monodentate. The compound is an uncommon example of a molecule containing an $^{-}S-CH=CH-NH_2$ ligand grouping that is neither chelating nor bridging.

for 2360 $[I_{net} > 2.5\sigma(I_{net})]$ reflections. The geometry

at the Sn atom is tetrahedral and the 2-amino-

0108-2701/89/091294-03\$03.00

© 1989 International Union of Crystallography

Introduction. The sulfido linkage generally reduces the Lewis acidity of tin in triorganotin sulfides; for example, triorganotin thiocarbamates are fourcoordinate molecules (Chandra, James, Magee, Patalinghug, Skelton & White, 1988; Holt, Nasser, Wilson & Zuckerman, 1985; Srivastava, Gupta, Nöth & Rattay, 1988) despite the known ability of the thiocarbamato ligand to chelate to metals. The Sn atom in triphenyltin 4-pyridyl sulfide, on the other hand, is five coordinate with a trigonalbipyramidal geometry: the imino N atom bridges the molecules to give a trans-C₃SnNO chain (Bokii, Struchkov, Kravtsov & Rokhlina, 1973b). In contrast, in triphenyltin 8-quinolinyl sulfide, the ligand adopts a chelating bonding mode which results in a monomeric cis-C₃SnNS trigonal-bipyramidal configuration for the compound (Furmanova, Struchkov, Rokhlina & Kravtsov, 1980). An unusual square-pyramidal geometry has been found in tribenzyltin 2-pyridyl sulfide N-oxide (Ng, Chen Wei, Kumar Das & Mak, 1987) but unfortunately a diffraction study on triphenyltin 2-pyridyl sulfide N-oxide (Boehringer Ingelheim GmbH, 1966), for which a similar geometry is anticipated, could not be carried out as the compound was not crystalline. The present study was initiated because triphenyltin triphenyltin 2-pyridyl sulfide *N*-oxide and 2-aminophenyl sulfide (Poller & Ruddick, 1972) are isoelectronic, and therefore conceivably also isostructural.

Experimental. The title compound was prepared by a literature procedure (Poller & Ruddick, 1972). The cell dimensions were obtained from 38 reflections with 2θ in the range $100.0-120.0^{\circ}$ on a $0.10 \times 0.20 \times$ 0.30 mm crystal. The intensity data were collected to $2\theta_{\rm max} = 119.9^{\circ}$ with graphite-monochromatized Cu $K\alpha_1$ radiation on a Picker diffractometer using the $\theta/2\theta$ scan technique with profile analysis (Grant & Gabe, 1978); the h, k, l ranges were -10 to 9, 0 to 21 and 0 to 14; 3236 measured reflections, 2360 with $I_{\text{net}} > 2.5\sigma(I_{\text{net}})$. Absorption corrections were applied. The minimum and maximum transmission factors are 0.274251 and 0.494713, respectively. The structure was solved by direct methods and refined by full-matrix least-squares techniques using the NRC VAX program system (Gabe, Lee & Le Page, 1985). The H-atom positions of the phenyl groups were calculated. Scattering factors were taken from International Tables for X-ray Crystallography (1974). The final least-squares cycle was calculated with 46 atoms, 245 parameters; weights were based on counting statistics. The residuals are: for significant reflections, R = 0.044, wR = 0.037, goodness-offit = 2.153; for all reflections, R = 0.065, wR = 0.038. The maximum Δ/σ ratio was 0.051. In the last $\Delta\rho$ map, the deepest hole was $-0.400 \text{ e} \text{ Å}^{-3}$ and the

Table 1. Atomic coordinates and equivalent isotropic temperature factors

x	у	Ζ	$B_{eq}^{*}(A^2)$			
0.79213 (6)	0.56123 (3)	0.30763 (4)	4.34 (3)			
0.6095 (3)	0.6226 (1)	0.1621 (2)	5.7 (1)			
0.8111 (11)	0.7405 (4)	0.1193 (7)	10.0 (7)			
0.7704 (9)	0.4538 (4)	0.2683 (6)	4.2 (4)			
0.6283 (10)	0.4244 (5)	0.2113 (7)	5.9 (5)			
0.6168 (12)	0.3540 (5)	0.1823 (8)	7.2 (6)			
0.7442 (13)	0.3108 (5)	0.2092 (8)	7.2 (7)			
0.8828 (11)	0.3381 (5)	0.2669 (7)	6.1 (6)			
0.8948 (9)	0.4097 (5)	0.2954 (6)	4.9 (5)			
0.7304 (9)	0.5908 (4)	0.4460 (6)	4.4 (4)			
0.6896 (9)	0.5410 (4)	0.5131 (7)	4.9 (5)			
0.6519 (10)	0.5633 (6)	0.6041 (7)	6.0 (6)			
0.6527 (11)	0.6318 (6)	0.6303 (7)	6.3 (6)			
0.6927 (11)	0.6816 (5)	0.5659 (7)	6.2 (6)			
0.7317 (10)	0.6609 (4)	0-4731 (7)	5.4 (5)			
1.0177 (9)	0.5971 (4)	0.3208 (6)	4.2 (4)			
1.1041 (11)	0.6291 (5)	0.4136 (7)	5.5 (5)			
1.2490 (13)	0.6525 (5)	0.4247 (8)	6.9 (7)			
1.3130 (11)	0.6436 (5)	0.3422 (11)	7.6 (8)			
1.2305 (12)	0.6113 (5)	0.2488 (8)	6.5 (7)			
1.0830 (10)	0.5881 (4)	0.2395 (7)	5.2 (5)			
0.7199 (9)	0.6199 (5)	0.0718 (6)	4.8 (5)			
0.8086 (12)	0.6805 (7)	0.0639 (9)	7.1 (7)			
0.9009 (17)	0.6734 (8)	-0.0070 (11)	10.0 (9)			
0.8988 (17)	0.6140 (10)	-0·0638 (11)	10.7 (13)			
0.8114 (15)	0.5552 (9)	-0.0565 (9)	10.6 (10)			
0.7204 (10)	0.5580 (6)	0.0120 (7)	6.2 (5)			
	x 0.79213 (6) 0.6095 (3) 0.8111 (11) 0.7704 (9) 0.6283 (10) 0.6168 (12) 0.7442 (13) 0.8828 (11) 0.8828 (11) 0.8948 (9) 0.7304 (9) 0.6519 (10) 0.6527 (11) 0.6927 (11) 0.6927 (11) 0.6927 (11) 0.7317 (10) 1.0177 (9) 1.1041 (11) 1.2490 (13) 1.3130 (11) 1.2305 (12) 1.0830 (10) 0.7199 (9) 0.8086 (12) 0.9009 (17) 0.8988 (17) 0.8114 (15) 0.7204 (10)	x y 0.79213 (6) 0.56123 (3) 0.6095 (3) 0.6226 (1) 0.8111 (11) 0.7405 (4) 0.7704 (9) 0.4538 (4) 0.6223 (10) 0.4244 (5) 0.6168 (12) 0.3540 (5) 0.7442 (13) 0.3108 (5) 0.7344 (9) 0.4538 (1) 0.7344 (9) 0.5908 (4) 0.6896 (9) 0.5410 (4) 0.6896 (9) 0.5410 (4) 0.6519 (10) 0.5633 (6) 0.6527 (11) 0.6318 (6) 0.66927 (11) 0.6318 (6) 0.67317 (10) 0.6609 (4) 1.0177 (9) 0.5971 (4) 1.0177 (9) 0.5971 (4) 1.0177 (9) 0.5971 (4) 1.0177 (9) 0.6525 (5) 1.3130 (11) 0.6436 (5) 1.2305 (12) 0.6113 (5) 0.6305 (12) 0.6136 (5) 0.7199 (9) 0.6199 (5) 0.8086 (12) 0.6805 (7) 0.9009 (17) 0.67344 (8)	xyz0.79213 (6)0.56123 (3)0.30763 (4)0.6095 (3)0.6226 (1)0.1621 (2)0.8111 (11)0.7405 (4)0.1193 (7)0.7704 (9)0.4538 (4)0.2683 (6)0.6283 (10)0.4244 (5)0.2113 (7)0.6168 (12)0.3540 (5)0.1823 (8)0.7442 (13)0.3108 (5)0.2092 (8)0.8828 (11)0.3381 (5)0.2669 (7)0.8948 (9)0.4097 (5)0.2954 (6)0.7304 (9)0.5908 (4)0.4460 (6)0.6896 (9)0.5410 (4)0.5131 (7)0.6519 (10)0.5633 (6)0.6041 (7)0.6527 (11)0.6318 (6)0.6303 (7)0.6927 (11)0.6616 (5)0.5659 (7)0.7317 (10)0.6609 (4)0.4731 (7)1.0177 (9)0.5971 (4)0.3208 (6)1.1041 (11)0.6221 (5)0.4136 (7)1.2305 (12)0.6113 (5)0.2488 (8)1.0830 (10)0.5881 (4)0.2395 (7)0.7199 (9)0.6199 (5)0.718 (6)0.8086 (12)0.6805 (7)0.0639 (9)0.9009 (17)0.6734 (8)-0.0701 (1)0.8988 (17)0.6140 (10)-0.638 (11)0.8114 (15)0.5552 (9)-0.0555 (9)0.7204 (10)0.5580 (6)0.0120 (7)			

* B_{eq} is the mean of the principal axes of the thermal ellipsoid.

highest peak was $0.380 \text{ e} \text{ Å}^{-3}$. The secondaryextinction coefficient was 8.149453. The final atomic positions and equivalent isotropic temperature factors are listed in Table 1. Distances and angles for triphenyltin 2-aminophenyl sulfide are listed in Table 2. Fig. 1 is a view of the molecule.*

Discussion. The Sn atom in triphenyltin 2-aminophenyl sulfide is four coordinate, with the ipso C atoms of the three phenyl rings and the S atom occupying the corners of the tetrahedron around the metal. The aromatic plane of the ligand is twisted around the C_{ipso} — C_{para} —S axis so that the ortho substituents, the amino group and an H atom, appear to be as far as possible from the metal atom [Sn-S-C(41)-C(42) - 97.7(6), Sn-S-C(41)- $C(46) \ 80.9 \ (5)^{\circ}$; the Sn...N distance exceeds 4 Å. A similar ligand arrangement is found in triphenyltin 2-methylphenyl sulfide (Bokii, Struchkov, Kravtsov & Rokhlina, 1974). The Sn—S bond is similar in length to those found in other four-coordinate triphenyltin aryl sulfides (Bokii, Struchkov, Kraytsov & Rokhlina, 1973a, 1974; Clarke, Cradwick & Wardell, 1973), but is slightly longer than the bond in bis(triphenyltin) sulfide (D'yachenko, Zolotoi, Atovmyan,

^{*} Lists of structure factors, anisotropic thermal parameters and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51868 (25 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 2. Bond distances	(Å) and	angles	(°`)
-------------------------	----	-------	--------	-----	---

14010 2.	Dona andrance		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Sn—S	2.436 (2)	Sn-C(11)	2.108 (8)
Sn-C(21)	2.124 (8)	Sn-C(31)	2.118 (8)
S-C(41)	1.760 (9)	N-C(42)	1.35 (2)
C(11)-C(12)	1.41 (1)	C(11)-C(16)	1.37 (1)
C(12) - C(13)	1.39 (1)	C(13)-C(14)	1.38 (2)
C(14)-C(15)	1.37 (1)	C(15)-C(16)	1.41 (1)
C(21)-C(22)	1.42 (1)	C(21)-C(26)	1.38 (1)
C(22)-C(23)	1.40 (1)	C(23)—C(24)	1.35 (2)
C(24)-C(25)	1.39 (2)	C(25)—C(26)	1.42 (1)
C(31)-C(32)	1.39 (1)	C(31)-C(36)	1.37 (1)
C(32)—C(33)	1.36 (2)	C(33)-C(34)	1.38 (2)
C(34)-C(35)	1.38 (2)	C(35)-C(36)	1.38 (1)
C(41)-C(42)	1.43 (2)	C(41)-C(46)	1.42 (2)
C(42)—C(43)	1.43 (2)	C(43)—C(44)	1·35 (3)
C(44)—C(45)	1.39 (3)	C(45)—C(46)	1.39 (2)
S-Sn-C(11)	106-3 (2)	S—Sn—C(21)	104.8 (2)
S—Sn—C(31)	109.4 (2)	C(11)—Sn— $C(21)$	116-0 (3)
C(11)—Sn—C(31)	110.7 (3)	C(21)— Sn — $C(31)$	109.4 (3)
Sn-S-C(41)	97.1 (3)	Sn-C(11)-C(12)	121.6 (6)
SnC(11)C(16)	121.4 (6)	C(12)-C(11)-C(1	6) 117.0 (7)
C(11)-C(12)-C(1	3) 121.0 (8)	C(12)-C(13)-C(1	4) 121.0 (8)
C(13)-C(14)-C(1	5) 118-8 (9)	C(14)-C(15)-C(1	6) 120-2 (8)
C(11)-C(16)-C(1	5) 122.0 (7)	Sn-C(21)-C(22)	122.4 (6)
Sn-C(21)-C(26)	119.4 (6)	C(22)-C(21)-C(2	6) 118-2 (7)
C(21)-C(22)-C(2	3) 120-0 (8)	C(22)-C(23)-C(2	4) 121.7 (8)
C(23)-C(24)-C(2	5) 119-4 (8)	C(24)-C(25)-C(2	6) 120.3 (8)
C(21)-C(26)-C(2	5) 120.3 (8)	SnC(31)C(32)	120-2 (6)
Sn-C(31)-C(36)	121-3 (6)	C(32)-C(31)-C(3	6) 118.5 (7)
C(31)-C(32)-C(3	3) 121.7 (8)	C(32)-C(33)-C(3	4) 119-3 (9)
C(33)-C(34)-C(3	5) 120-5 (9)	C(34)-C(35)-C(3	6) 118.9 (9)
C(31)-C(36)-C(3	5) 121-1 (8)	SC(41)C(42)	117-9 (8)
S-C(41)-C(46)	119-3 (7)	C(42) - C(41) - C(41)	6) 122.8 (9)
N-C(42)-C(41)	125 (1)	N-C(42)-C(43)	121 (1)
C(41)-C(42)-C(4	3) 115 (1)	C(42)-C(43)-C(4	4) 121 (1)
C(43)-C(44)-C(4	5) 124 (1)	C(44)-C(45)-C(4	6) 118 (1)
C(41)-C(46)-C(4	5) 119 (1)		

 $\begin{array}{c} C24 \\ c21 \\ c21 \\ c22 \\ c21 \\ c31 \\ c34 \\ c44 \\$

Fig. 1. Triphenyltin 2-aminophenyl sulfide, with atomic labeling.

Mirskov & Voronkov, 1977). The 97·1 (3)° Sn—S—C angle in 2-aminobenzenethiol is of a similar size compared to the angle at sulfur found in the 2-methyl (98·6°), 2,6-dibromo-4-fluoro (101·0°) (Bokii, Struchkov, Kravtsov & Rokhlina, 1974) and 2,4,6-trimethyl (100·2°) (Bokii, Struchkov, Kravtsov & Rokhlina, 1973*a*) benzenethiols, but is smaller than the angle in triphenyltin 4-*tert*-butylphenyl sulfide (105·0°) (Clarke, Cradwick & Wardell, 1973). In these structures, this Sn—S—C angle opens up in response to the steric bulk of the substituents in the ligand, and the packing of the molecules in the unit cell appears to be dictated largely by steric factors. The S atom raises the average C-Sn-C angle in the title compound from the tetrahedral 109.5 to 112.0°. in accordance with Bent's (1961) rule, which predicts that the more electronegative S atom will tend to concentrate p character along the Sn—S bond, thereby imparting more s character to the Sn-C bonds. The average C-Sn-C angle in the related four-coordinate (2-aminobenzoato)triphenyltin (Swisher, Vollano, Chandrasekhar, Day & Holmes, 1984) is also 112.0°; the amino group is hydrogen bonded to the carboxyl O atom, precluding a bridging or a chelating mode for the ligand. The N and S atoms in the title compound are presumably also hydrogen bonded.

We thank the National Science Council for Research & Development (Malaysia) [Grant No. 2-07-04-06], the National Sciences and Engineering Research Council (Canada) and Laurentian University for support of this work.

References

- BENT, H. A. (1961). Chem. Rev. 61, 275-311.
- Boehringer Ingelheim GmbH (1966). British Patent No. 1 018 805. Chem. Abstr. 64, 11251a.
- BOKII, N. G., STRUCHKOV, YU, T., KRAVTSOV, D. N. & ROKH-LINA, E.M. (1973a). J. Struct. Chem. (USSR), 14, 258–266.
- BOKII, N. G., STRUCHKOV, YU, T., KRAVTSOV, D. N. & ROKH-LINA, E. M. (1973b). J. Struct. Chem. (USSR), 14, 458-462.
- BOKII, N. G., STRUCHKOV, YU, T., KRAVTSOV, D. N. & ROKH-LINA, E. M. (1974). J. Struct. Chem. (USSR), 15, 424-429.
- CHANDRA, S., JAMES, B. D., MAGEE, R. J., PATALINGHUG, W. C., SKELTON, B. W. & WHITE, A. H. (1988). J. Organomet. Chem. 346, 7–12.
- CLARKE, P. L., CRADWICK, M. E. & WARDELL, J. L. (1973). J. Organomet. Chem. 63, 279-285.
- D'YACHENKO, O. A., ZOLOTOI, A. B., ATOVMYAN, L. O., MIRSKOV, R. G. & VORONKOV, M. G. (1977). Dokl. Phys. Chem. 237, 1142-1145.
- FURMANOVA, N. G., STRUCHKOV, YU, T., ROKHLINA, E. M. & KRAVTSOV, D. N. (1980). J. Struct. Chem. (USSR), 21, 766–771.
- GABE, E. J., LEE, F. L. & LE PAGE, Y. (1985). Crystallographic Computing 3: Data Collection, Structure Determination, Proteins, and Databases, edited by G. M. SHELDRICK, C. KRÜGER & R. GODDARD, pp. 167–174. Oxford: Clarendon Press.
- GRANT, D. F. & GABE, E. J. (1978). J. Appl. Cryst. 11, 114-120.
- HOLT, E. M., NASSER, F. A. K., WILSON, A. JR & ZUCKERMAN, J. J. (1985). Organometallics, 4, 2073–2080.
- International Tables for X-ray Crystallography (1974). Vol. IV. Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- NG, S. W., CHEN WEI, KUMAR DAS, V. G. & MAK, T. C. W. (1987). J. Organomet. Chem. 326, C61-C64; 334, 283-294.
- POLLER, R. C. & RUDDICK, J. N. R. (1972). J. Chem. Soc. Dalton Trans. pp. 555-558.
- SRIVASTAVA, D. K., GUPTA, V. D., NÖTH, H. & RATTAY, W. (1988). J. Chem. Soc. Dalton Trans. pp. 1533-1541.
- SWISHER, R. G., VOLLANO, J. F., CHANDRASEKHAR, V., DAY, R. O. & HOLMES, R. R. (1984). *Inorg. Chem.* 23, 3147–3152.

